
Wiskott–Aldrich syndrome (WAS) is an X-linked 
recessive disease that was described as a clinical triad 
of immunodeficiency, thrombocytopenia and eczema. 
Without aggressive treatment, such as bone-marrow 
transplantation, most patients die by 10 years of age due 
to recurrent infections, haemorrhage or autoimmune 
diseases1–4. WASP was initially identified as the causative 
gene of WAS5. Expression of WASP is restricted to hae-
matopoietic cells, and haematopoietic cells from patients 
with WAS have abnormally smooth cell surfaces. This 
finding indicated that WASP is associated with the 
cytoskeleton, because the cell membrane is thought 
to be supported by the intracellular cytoskeleton. 
Neural (N-)WASP was identified later through its inter-
action with growth-factor receptor-bound protein-2 
(GRB2; also known as Ash), an adaptor protein that 
functions downstream of receptor-tyrosine kinases6. 
Although N-WASP was named neural WASP because 
it was abundant in neural tissue, it is localized in several 
other tissue types.

WASP and N-WASP proteins possess common 
domains, such as the C-terminal verprolin-homology 
domain (V; also known as WASP-homology-2 domain 
(WH2)), the cofilin-homology domain (also known 
as central domain (C)) and the acidic domain (A). 
Collectively, these three domains form the VCA 
region. The VCA region binds to an actin monomer 
and to the ARP2/3 complex, leading to a burst of actin 
polymerization through the activation of the ARP2/3 
complex, which mediates nucleation of actin polymeri-
zation7,8. WASP-family verprolin-homologous protein-1 

(WAVE1) was identified in a screen for proteins with 
sequence homology to the VCA region9. A WAVE 
protein was also identified as a suppressor of the cyclic 
AMP receptor (cAR) mutant in Dictyostelium and was 
named SCAR10. Screening of an expression sequence tag 
(EST) library led to the identification of WAVE2 and 
WAVE3 (REF. 11). In mammals, WAVE2 is expressed 
ubiquitously. By contrast, WAVE1 and WAVE3 are 
enriched in the brain, but are also localized throughout 
the body in mammals. The mammalian WASP and 
WAVE family contains five members: WASP, N-WASP, 
WAVE1, WAVE2 and WAVE3 (REF. 8).

Budding yeast has Las17, a homologue of WASP and 
N-WASP12. Yeast seem to lack WAVE proteins; however, 
WAVE proteins are present in Dictyostelium, indicating 
that WAVE is necessary for multicellular organisms, in 
which cells must migrate for morphogenesis and alter 
their shapes to adapt to changing environments.

Recently, several new factors that interact with 
WASP and WAVE family proteins have been identified 
(Supplementary information S1 (table)). These factors 
bind to WASP and WAVE proteins and regulate their 
interactions with the ARP2/3 complex. Here, we will 
discuss how WASP and WAVE proteins are regulated 
through these binding partners, which modulate 
the intermolecular or intramolecular interactions 
of WASP and WAVE proteins. We will also focus on 
the members of a family of proteins that can deform 
membranes into narrow tubules in vitro and in vivo. 
These membrane-deforming proteins contain the 
Bin, amphiphysin, Rvs167 (BAR) domain, the extended 
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Thrombocytopenia
The presence of fewer than 
usual platelets.

Eczema
A state of inflammation of the 
skin that is characterized by 
redness, skin oedema, itching 
and dryness.

ARP2/3 complex
(Actin-related protein-2/3 
complex). A complex that 
consists of seven subunits. 
ARP2 and ARP3 are thought to 
function as two of the three 
actin monomers that are 
required for the nucleation of 
actin polymerization.

The WASP–WAVE protein network: 
connecting the membrane to 
the cytoskeleton
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Abstract | Wiskott–Aldrich syndrome protein (WASP) and WASP-family verprolin-
homologous protein (WAVE) family proteins are scaffolds that link upstream signals to 
the activation of the ARP2/3 complex, leading to a burst of actin polymerization.
ARP2/3-complex-mediated actin polymerization is crucial for the reorganization of the 
actin cytoskeleton at the cell cortex for processes such as cell movement, vesicular 
trafficking and pathogen infection. Large families of membrane-binding proteins were 
recently found to interact with WASP and WAVE family proteins, therefore providing a 
new layer of membrane-dependent regulation of actin polymerization.
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BAR domain
A dimeric coiled-coil domain 
found in Bin1, amphiphysin, 
Rvs167, endophilin and 
related molecules. The BAR 
domain is curved with positive 
charges on its concave surface. 
The curved surface of the BAR 
domain is thought to 
correspond to the curvature of 
the cell membrane or the 
membrane tubules.

EFC domain
(Extended Fer-CIP4 homology 
domain; also known as the 
FCH-BAR (F-BAR) domain). A 
dimeric coiled-coil domain that 
has weak similarity to the BAR 
domain. This domain is found 
in the pombe-Cdc15-homology 
(PCH) family of proteins.

Fer-CIP4 homology (EFC) domain (also known as the 
FCH-BAR (F-BAR) domain), or the Rac-binding 
(RCB) domain (also known as the IRSp53-Mim-
homology domain (IMD)). Most of these proteins have 
Src-homology-3 (SH3) domains that interact with 
WASP and WAVE proteins. We propose that WASP 
and WAVE proteins and these membrane-deforming 
proteins regulate cell shape through effects on both 
actin polymerization and the cell membrane in several 
biological processes.

WASP and WAVE proteins are now recognized as 
scaffold proteins that convert signals from protein–
protein and protein–membrane interactions to actin 
polymerization. WASP and WAVE proteins induce 
actin polymerization during several biological func-
tions, such as the formation of filopodia and lamellipodia 
in cell migration (BOX 1), membrane trafficking, podosome 
and invadopodium formation, cell adhesion, pathogen 
infection (BOX 2), neurite extension and spine formation 
(BOX 3).

WASPs activate the ARP2/3 complex
In mammals, the five WASP and WAVE proteins each 
comprise approximately 500 amino acids and have 
similar domain architecture8 (FIG. 1).

The VCA region. The C-terminal VCA region forms 
an amphipathic helix13 and interacts with two proteins. 
The V domain binds to an actin monomer, and the 
CA domain binds to the ARP2/3 complex. Actin poly-
merization is initiated by the assembly of three actin 
monomers; the ARP2/3 complex has two actin-related 
molecules, therefore the binding of another actin mon-
omer mimics the assembly of three actin monomers. 
The VCA region functions as the platform on which 
an actin monomer binds to the ARP2/3 complex to 
initiate actin polymerization14–21 (FIG. 1).

Although the VCA region alone can activate the 
ARP2/3 complex, full-length WASP and N-WASP with 
a partial deletion of the acidic or the basic region show 
higher ARP2/3 activation than does the VCA alone. 
This indicates that other regions of these proteins also 
contribute to ARP2/3 activation22–25.

The WH1 domain binds to the WIP family. The 
N-terminal regions of WASPs are different from 
those of WAVEs. WASP and N-WASP contain a WH1 
domain (also known as the Ena-VASP-homology-1 
(EVH1) domain) that is followed by a basic region and 
a GTPase-binding domain (GBD; also known as the 
CDC42/Rac-interactive binding (CRIB) region)6,15,26. 
The WH1 domain binds to a specific proline-rich 
sequence of the WASP-interacting protein (WIP) 
family of proteins, which includes WIP, corticosteroids 
and regional expression-16 (CR16) as well as WIP- and 
CR16-homologous protein (WICH; also known as 
WIP-related (WIRE))27–31.

WIP, CR16 and WICH/WIRE form heterocom-
plexes with WASP and N-WASP29–32. The interaction 
between WASP or N-WASP and proteins of the WIP 
family is stable, which indicates that WIP proteins 
might help to maintain the stability of WASP pro-
teins33,34. The interaction with WIP is thought to sup-
press the activity of WASP or N-WASP35–37; however, 
WIP also functions as a scaffold that links WASP to 
adaptor proteins such as CrkL and Nck, and is recruited 
to places of vigorous actin polymerization38–40.

The WH1 domain is a hot spot for mutations in 
patients with WAS4, and WIP-deficient mice have 
defects in T-cell and B-cell activation. T cells from 
WIP-knockout mice have defects in their actin 
cytoskeletons that are similar to the defects of the T cells 
from WASP-knockout mice. However, the defects of 
WIP-knockout B cells are different from the defects 
of WASP-knockout B cells41,42. Taken together, these 
findings indicate that WIP family proteins are impor-
tant for WASP function, but that WIP can also func-
tion independently of WASP in certain cell types. The 
physiological roles of WIP family proteins remain 
unclear.

Binding of small GTPases. WASP proteins also 
interact with phosphoinositides and small GTPases. 
Phosphoinositides interact with the basic region in 
WASP and N-WASP16,43,44. Negatively charged phos-
phoinositides are thought to associate with the basic 
region through electrostatic interactions.

Box 1 | Actin cytoskeleton and cell movement

Reorganization of actin filaments provides the force required for multiple biological 
processes. Most of these processes are coupled with the deformation of the cell 
membrane. Such membrane-cytoskeleton-coupled processes include: the formation of 
filopodia, lamellipodia and podosomes for cell movement or cancer-cell invasion; 
endocytosis, phagocytosis, exocytosis and various membrane-trafficking events; 
cytokinesis and intracellular movement of pathogenic bacteria.

Two-dimensional cell movement is induced by four ordered steps: front-membrane 
protrusion, adhesion of the protrusion to substrate, movement of the cell body, and 
retraction of the rear part of the cell46. These processes are highly coordinated and 
governed by the Rho family of GTPases. During membrane protrusion, rapid actin 
polymerization is induced at the leading edge, resulting in formation of filopodia and 
lamellipodia; filopodium formation is mediated by the RhoGTPase CDC42 and 
lamellipodium formation by Rac. Retraction of the rear of the cell is mediated by RhoA.

The above mentioned adhesion-dependent movement is powered by actin 
polymerization to protrude the leading edge131. However, the mechanism by which 
motive force is generated was unclear until the discovery of the ARP2/3 complex and 
Wiskott–Aldrich syndrome proteins (WASP) and WASP-family verprolin-homologous 
(WAVE) family proteins.

WASP and neural (N-)WASP contain proline-rich sequences that can bind to Src-
homology-3 (SH3) domains and profilin. Profilin is a small protein that binds to an actin 
monomer and then supplies the actin monomer to the barbed end (fast-growing end) 
of an actin filament132. Based on the function of profilin, we postulated that binding of 
WASP or N-WASP to profilin-bound actin through the WASP and N-WASP proline-
rich region and to the actin monomer through the WASP and N-WASP verprolin-
homology domain is important for WASP and N-WASP-induced actin-filament 
reorganization133,134. Actin-cytoskeleton reorganization was impaired after expression 
of N-WASP that lacked the verprolin-homology domain or the profilin-binding 
region14,134. WAVE proteins also bind to profilin9,119. However, profilin was not essential 
for the induction of actin polymerization by WASP, N-WASP and WAVE proteins; actin 
polymerization can be induced by the association of the ARP2/3 complex to the VCA 
(verprolin-homology domain, cofilin-homology domain and acidic domain) region in 
WASP, N-WASP and WAVE proteins. Profilin has a role in supplying actin monomers to 
a VCA region that is bound to the ARP2/3 complex to accelerate nucleation22,133,135, 
and profilin is an important factor for reconstitution of N-WASP-driven actin-based 
motility136 (BOX 2).
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IRSp53
An adaptor protein that 
contains an N-terminal Rac-
binding (RCB) domain, which 
binds to Rac, actin filaments 
and the cell membrane. Its 
C-terminal Src-homology-3 
(SH3) domain binds to WAVE2, 
Ena (also known as VASP) and 
other proteins, and its CDC42/
Rac-interactive binding (CRIB) 
region is responsible for 
binding to CDC42.

Filopodium
A spiky structure that 
protrudes from the cell. 
Bundled actin filaments fill the 
inside of a filopodium.

Lamellipodium
A flat cellular structure that 
protrudes in the direction of 
cell movement. Branched actin 
filaments fill the inside of a 
lamellipodium.

Next to the basic region, there is a CRIB region. The 
CRIB region of WASP and N-WASP has been shown to 
bind to CDC42, a small GTPase that is involved in filopo-
dium formation and cell polarity15,45,46. Overexpression of 
WASP or N-WASP in cultured cells resulted in increased 
actin filaments at sites of WASP or N-WASP localiza-
tion6,15, whereas expression of a dominant-negative form 
of CDC42 reduced the number of WASP- or N-WASP-
induced actin filaments15,45. Based on these findings, 
WASP proteins are thought to function downstream of 
CDC42 (REF. 46). Other small GTPases related to CDC42, 
such as Tc10, RhoT and Chp, have also been shown to 
bind to and to activate N-WASP 47–49.

Autoinhibition and activation of WASPs. Under rest-
ing conditions, WASP and N-WASP are folded by an 
intramolecular interaction between the C-terminal 
VCA region and the N-terminal region (including 
the CRIB region and its surrounding regions)16,45,50,51. 
Folded WASP and N-WASP are inactive because 
the VCA region is masked, thereby inhibiting access of the 
ARP2/3 complex to the VCA region.

Autoinhibition is released by the competitive binding 
of other molecules to the CRIB or surrounding regions. 
CDC42 binds to the CRIB region, releasing the interac-
tion between the CRIB and the VCA. Mouse DAB1, a 
molecule that regulates cortical layer formation in the 
brain, also binds to a region close to CRIB and releases 

autoinhibition of N-WASP in vitro52. The basic region 
of N-WASP also contributes to autoinhibition, as an 
N-WASP-mutant protein that lacks the basic region 
has higher activity for ARP2/3 activation than full-
length N-WASP24. Phosphoinositides bind to the basic 
region and synergize with CDC42 to induce WASP and 
N-WASP activation16,45,50,51.

The binding of SH3-domain-containing proteins 
to the proline-rich region of WASP and N-WASP acti-
vates the ARP2/3 complex, but the precise mechanism 
of this is not clear53–56. Various degrees of N-WASP 
activation were observed to be dependent on the SH3 
domains from various proteins53. The SH3 domains of 
adaptor proteins such as Nck, GRB2 and WISH (also 
known as DIP and SPIN90) activate WASP or N-WASP. 
CDC42 functions with GRB2, but not with Nck, in the 
activation of N-WASP 43,54. The SH3 domain of TOCA1 
was shown to activate the N-WASP–WIP complex or 
the N-WASP–CR16 complex in the presence of active 
CDC42 (REF. 36).

Phosphorylation of WASP and N-WASP by the Src 
family of tyrosine kinases occurs close to the CRIB 
region and releases the intramolecular interaction57–59. 
This phosphorylation seems to be enhanced by the 
activation of CDC42 (REFS 38,59). Importantly, WASP 
phosphorylation and binding of CDC42 have a syner-
gistic effect on the activation of the ARP2/3 complex. 
Therefore, activation of the ARP2/3 complex by WASP 
and N-WASP is locally optimized by the additive effects 
of various types of signalling molecule.

Phosphorylated N-WASP is degraded through 
proteasome-mediated proteolysis58,60. The degrada-
tion of N-WASP influences its activity. The molecular 
chaperone heat-shock protein-90 (HSP90) was found to 
elongate the half-life of N-WASP through the inhibition 
of the degradation of N-WASP60. The WH1 domain of 
WASP binds to the kinase domain in Src family kinases 
to negatively regulate Src-kinase activity61. Therefore, 
WIP binding to WASP might regulate the phosphoryla-
tion of WASP by suppressing the binding of WASP to 
Src family kinases.

Possible regulation by membrane curvature
Association with curvature-sensing proteins. In endo-
cytosis, actin polymerization seems to have important 
roles in vesicle fission and in subsequent vesicle traffick-
ing inside the cell. The endocytosis machinery includes 
many membrane-binding proteins, and most of these 
bind to N-WASP as well as to the GTPase dynamin56,62–65. 
The discovery of the syndapin (also known as pacsin) 
family of proteins in mammals showed that N-WASP is 
involved in vesicular trafficking, particularly in endo-
cytosis66–68. These membrane-binding proteins include 
proteins with BAR domains and EFC domains.

A large number of proteins that contain BAR or 
EFC domains bind to N-WASP through their SH3 
domains. These domains are frequently found in pro-
teins that are involved in endocytosis56,62–65,69,70 (FIGS 2a,3 
and Supplementary information S1 (table)). BAR and 
EFC domains have been characterized as membrane-
binding domains56,62–65 (FIG. 3). These domains bind 

Box 2 | Insights into WASP function through pathogen infection

Several pathogens move inside infected cells by forming actin comets on their surfaces. 
Pathogens such as Listeria, Shigella, vaccinia virus and enteropathogenic Escherichia 
coli (EPEC) use the host-cell actin-regulatory machinery to spread the infection. Insights 
into how the ARP2/3 complex is activated, and how the resulting actin filaments are 
organized and maintained, were provided through studies of these pathogens. 
Listeria have a protein (ActA) that directly activates the ARP2/3 complex137. By contrast, 
Shigella have the IcsA (also known as VirG) protein, which binds to and activates neural 
Wiskott–Aldrich syndrome protein (N-WASP) for the activation of the ARP2/3 
complex138,139. Vaccinia virus expresses the A36R protein, which is phosphorylated by 
host-cell Src family kinases, and the Src-homology-2 (SH2) domain of the adaptor 
protein Nck binds to the phosphorylated tyrosine of A36R40. The SH3 domain of 
Nck then recruits and activates N-WASP or the N-WASP–WIP (WASP-interacting 
protein) complex.

Actin-comet-based movement can be reconstituted in vitro. Listeria and N-WASP-
bound Shigella can move in a solution that contains purified actin, the ARP2/3 complex, 
the capping protein, cofilin and profilin136 — these five components have been found in 
lamellipodia. This movement occurs with plastic beads coated with ActA or N-WASP. 
Organization of actin filaments from actin comets was branched in a similar manner to 
that observed in lamellipodia140. This complete reconstitution of actin-comet formation 
is thought to provide the minimum proteins that are required for lamellipodium 
formation.

N-WASP also has a crucial role in pedestal formation. The pedestal is a protrusive 
structure that is formed upon attachment of pathogens to the surface of host cells at 
the site where pathogens interact with the host cell. Pedestal formation is regulated by 
N-WASP downstream of Nck79,95,141. EPEC injects Tir protein into host cells. Tir is 
phosphorylated by a Src kinase and phosphorylated Tir interacts with the SH2 domain 
of Nck, which activates N-WASP. Similar Nck-based N-WASP activation seems to be 
used in cell–cell adhesion94, indicating that pathogens mimic the host cell-adhesion 
system.

The role of WAVE proteins in pathogen infection is not as clear. In apical invasion of 
polarized epithelia by Salmonella, activation of Rac is followed by actin rearrangement. 
WAVE2 is important for this invasion142.
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Podosome
A structure that protrudes into 
the extracellular matrix and 
that is enriched in actin 
filaments, matrix-degrading 
enzymes, focal adhesion 
molecules and molecules 
involved in vesicle trafficking.

Invadopodium
A structure that is similar to a 
podosome, but larger. 
Sometimes, podosomes in 
transformed cells are called 
invadopodia.

Phosphoinositides
A phospholipid species, 
members of which function as 
signalling molecules and 
contain an inositol ring. There 
are seven poly-
phosphoinositides, PtdIns(3)P, 
PtdIns(4)P, PtdIns(5)P, 
PtdIns(3,4)P2, PtdIns(3,5)P2, 
PtdIns(4,5)P2 and 
PtdIns(3,4,5)P3, corresponding 
to phosphorylation at the 
hydroxyl moiety in the inositol 
ring.

Latrunculin
A natural toxin produced by 
sponges of the Latrunculia 
genus. It binds to actin 
monomers and prevents them 
from polymerizing.

to phosphatidylserine and phosphatidylinositol 4,5-
bisphosphate (PtdIns(4,5)P2), and deform artificial 
liposomes and cell membranes into tubules. The defor-
mation of the membrane by the BAR and EFC domains 
might occur during the formation of endocytic vesicles. 
Alternatively, these domains might simply sense the cur-
vature of the membrane and recruit WASP and N-WASP. 
Blocking actin polymerization with latrunculin treatment 
resulted in localization of EFC-domain-containing 
proteins to tube-like structures, which indicated that 
N-WASP-mediated actin polymerization is important 
for fission and subsequent movement of vesicles56,63.

BAR- and EFC-domain-containing proteins form 
homodimers. The SH3 domains of the BAR and EFC 
proteins bind to dynamin, which is involved in mechani-
cal fission of membrane tubules to form vesicles56,63,64,69,71. 
Therefore, N-WASP-induced actin polymerization might 
function cooperatively with dynamin in vesicle fission 
in endocytosis mediated by BAR- and EFC-domain 
proteins (FIG. 4).

Las17, the yeast WASP homologue, was identified in a 
screen for mutants that were defective in endocytosis66–68. 
Las17 and verprolin-1 (Vrp1) — a yeast homologue 
of WIP — are recruited to clathrin-coated pits in the 
early stage of endocytosis with Bzz1 and Rvs167, which 
are EFC- and BAR-domain-containing proteins66,68,72. 
Recruitment of N-WASP or Las17 to clathrin-coated pits 
and the involvement of the actin cytoskeleton in endo-
cytosis have also been shown in mammalian cells68,73. 
The role of WASP and N-WASP in endocytosis is well 
conserved from yeast to mammals.

Direction of actin polymerization. Although actin 
polymerization is essential for endocytosis, the direc-
tion of actin polymerization — whether the barbed end 
of the actin is facing towards the endocytosis vesicles or 

towards the plasma membrane — is unclear (FIG. 4a,b). In 
lamellipodia and filopodia, the barbed ends are directed 
towards the plasma membrane. Therefore, actin polymer-
ization occurs centrifugally or outwardly in lamellipodia 
and filopodia7,74,75 (FIG. 4c).

The formation of actin comets on vesicles with 
endocytic properties is observed in cultured cells and 
in Xenopus laevis eggs under several conditions76,77. 
N-WASP is localized at the vesicles of these actin comets. 
Therefore, actin polymerization seems to occur inwardly 
from the plasma membrane; the barbed ends are directed 
towards the vesicles that move away from the plasma 
membrane77 (FIG. 4a). In this model, actin polymerization 
directly generates force for vesicle movement.

There is a mutant strain of yeast in which actin fila-
ments accumulate at sites of endocytosis. Photobleach 
analysis of actin in this yeast mutant indicated that actin 
polymerization occurs towards the plasma membrane 
(that is, the barbed ends are facing towards the plasma 
membrane, not to the endocytosis vesicles). Therefore, 
the direction of actin polymerization for endocytosis 
seems to be the same as the direction of actin polym-
erization during protrusive lamellipodium formation 
(FIG. 4b,c). In this case, the force generated by actin 
polymerization might function for vesicle movement or 
for vesicle fission. For vesicle movement, polymerizing 
pointed ends of actin filaments might possibly gener-
ate the direct force for comet-like vesicle movement68,75 
(FIG. 4b). For vesicle fission, the pushing of the plasma 
membrane by actin polymerization might generate the 
force for fission of the vesicles from the plasma mem-
brane (FIG. 4b). Other unexpected functions of actin 
polymerization remain to be considered.

Other biological functions of WASPs
WASP and N-WASP are involved in several biological 
functions that are accompanied by the activation of the 
ARP2/3 complex. These functions include filopodium 
formation, podosome formation, pathogen infection 
(BOX 2) and neurite extension (BOX 3).

Filopodium formation. Filopodia are thought to be 
generated by the activation of CDC42 or other small 
GTPases. Because N-WASP is activated by CDC42 
in vitro16, N-WASP was initially thought to induce 
filopodium formation45. N-WASP has been shown to 
be localized to certain types of filopodium78; however, 
filopodia still form in N-WASP-deficient cells79,80.

Filopodia contain straight bundles of actin filaments, 
but N-WASP-induced actin filaments are branched 
because they are induced by the activation of the ARP2/3 
complex19,20,81, indicating that N-WASP alone does not 
induce the formation of filopodia. N-WASP-binding 
proteins that induce bundling of actin filaments have not 
yet been discovered, and it is still unclear how N-WASP 
generates bundled actin filaments.

Filopodia can be generated independently of the 
ARP2/3 complex and WASP family proteins; for exam-
ple, the formation of certain types of filopodium occurs 
independently of ARP2/3 and WAVE2 (REF. 82). Formins, 
which also mediate actin nucleation, induce the formation 

Box 3 | N-WASP and WAVE1 in the nervous system

Among Wiskott–Aldrich syndrome protein (WASP) and WASP-family verprolin-
homologous (WAVE) family proteins, neural (N-)WASP, WAVE1 and WAVE3 are enriched 
in the brain6,11. N-WASP is involved in neurite extension as expression of a dominant-
negative N-WASP blocks neurite extension58,60,143, whereas the ARP2/3 complex is 
possibly a negative regulator of growth-cone translocation144. Knockdown of N-WASP 
by small interfering RNA enhances neurite extension145, which further complicates the 
role of N-WASP in growth-cone extension.

Some molecules that bind to N-WASP are also enriched in the brain. These binding 
molecules include slit-robo (sr)GAP146 and formin-binding protein-17 (FBP17; also 
known as rapostlin)147, which both contain EFC domains. The yeast homologue of 
FBP17, Toca-1, seems to be a negative regulator of neurite extension145. Although all 
three WAVE proteins localize at growth cones, their role in neurite and growth-cone 
extension is unclear111. The WAVE1 complex seems to be transported by kinesin-1, and 
this transport has been suggested to be important for axon elongation148.

Several reports have also indicated the involvement of N-WASP in spine formation — 
spine is an actin-rich protrusion on a dendrite149,150. Phosphorylation and 
dephos phorylation of WAVE1 are also involved in spine formation. Kim et al. recently 
reported that the WAVE1 complex was active during spine formation, and that cyclin-
dependent kinase-5 (CDK5) phosphorylates the proline-rich region of WAVE1 in the 
WAVE1 complex, resulting in the inhibition of the capability of WAVE1 to activate the 
ARP2/3 complex. The phosphorylation sites in the proline-rich region of WAVE1 are not 
conserved in WAVE2 and WAVE3. Activation of protein kinase A reduces the 
phosphorylation of WAVE1, leading to actin polymerization for spine formation114.
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Nephrin
Nephrin is a cell–cell adhesion 
molecule that belongs to the 
immunoglobulin superfamily 
and is localized at the slit 
diaphragm of kidney 
glomerulus. Mutations in the 
gene that encodes nephrin 
have been associated with the 
congenital nephrotic 
syndrome.

of straight actin filaments and are thought to be involved 
in filopodium formation83. Therefore, ARP2/3 activation 
and other actin-nucleation mechanisms, such as formin-
mediated actin nucleation, can function synergistically 
to induce filopodium formation.

Podosome and invadopodium formation. In macro-
phages and certain types of invasive cancer cell, a struc-
ture that is known as a podosome, or an invadopodium, 
protrudes into the extracellular matrix (ECM) during 
invasion. Podosome and invadopodium formation 
is thought to be essential for invasion and metastasis. 
Invasion of cells into the ECM is mediated through 

actin reorganization and the activation of matrix met-
alloproteinases (MMPs), which degrade the ECM. Src 
family tyrosine kinases84,85 and N-WASP are required for 
podosome and invadopodium formation. Expression 
of a dominant-negative mutant of N-WASP in Src-
transformed cells inhibited invadopodium formation 
and ECM degradation86–88. The binding of the Src fam-
ily substrate cortactin to N-WASP is essential for this 
process86. Cortactin also binds to the ARP2/3 complex 
and weakly activates actin polymerization89,90. It is 
thought that N-WASP-induced activation of the ARP2/3 
complex is essential for actin-cytoskeleton reorganiza-
tion that is associated with the protrusion of podosomes 
and invadopodia.

Although it is not known whether endocytosis 
occurs in podosomes84, molecules that are involved 
in endocytosis, such as dynamin, are also localized to 
podosomes84,85,91. Cortactin also binds to dynamin92. 
Therefore, N-WASP might be involved in podosome 
formation, not only through regulation of actin poly-
merization for protrusion, but also through interactions 
with molecules that are involved in endocytosis84,85.

N-WASP and WASP are also involved in cell-substratum 
adhesions through their interactions with the focal 
adhesion kinase (FAK)93. FAK and other focal adhesion 
molecules localize in podosomes; therefore N-WASP 
and WASP might function with these cell-adhesion 
molecules in podosomes.

N-WASP-binding adaptor proteins. WASP and N-WASP 
bind to several adaptor proteins including Nck, GRB2/
Ash, WISH/DIP/SPIN90 and Crk38,53–55. For example, 
Crk seems to be involved in the activation of WASP at 
immunological synapses, which are contact sites between 
cells of the immune system (such as between T cells and 
antigen-presenting cells)38. In the kidney, phosphory-
lation of nephrin by Src family kinases mediates the 
activation of N-WASP-induced actin polymerization by 
the adaptor Nck94. Similar molecules are used by some 
pathogens, including vaccinia virus and enteropatho-
genic Escherichia coli (EPEC), to induce actin comet 
or pedestal formation for prevalence of infection40,95 
(BOX 2). Clustering of Nck at the cell surface induces 
N-WASP-induced actin polymerization, indicating that 
Nck-mediated actin polymerization might regulate the 
reorganization of the actin cytoskeleton at cell adhesions 
upon activation of Src family kinases and recruitment of 
adaptor proteins96.

The WAVE complex
The N-terminal region of each member of the WAVE 
family contains a WAVE-homology domain (WHD) 
and a basic region10,11 (FIG. 1). The basic region of WAVE2 
binds to PtdIns(3,4,5)P3; PtdIns(3,4,5)P3 binding is 
important for the localization of WAVE2 (REF. 97).

The WHD of all three WAVEs is predicted to be a 
coiled-coil region and to contribute to the heterocomplex 
formation. The WAVE1 complex was identified first98, 
and the same protein complex for WAVE2 and WAVE3 
was later identified99–102. Each WAVE complex exists as 
a pentameric heterocomplex that consists of WAVE, 

Figure 1 | Domains and basic binding partners of N-WASP and WAVE2. Neural 
Wiskott–Aldrich syndrome protein (N-WASP) and WASP-family verprolin-homologous 
protein-2 (WAVE2) are the ubiquitous isoforms of the WASP and WAVE families,  
respectively. The function of each domain is shown. N-WASP has an N-terminal WASP-
homology-1 (WH1; also known as Ena-VASP-homology-1 (EVH1)) domain that WASP-
interacting protein (WIP), corticosteroid and regional expression-16 (CR16) or WIP- and 
CR16-homologous protein (WICH; also known as WIP-related (WIRE)) can bind to. 
WAVE2 has an N-terminal WAVE (also known SCAR)-homology domain (WHD/SHD) that 
mediates the protein complex formation with HSPC300, Abelson-interacting protein 
(ABI), NAP1, and SRA1 (or the closely related PIR121). The basic region (B) is common for 
N-WASP and WAVE2, and phosphoinositides (specifically, PtdIns(4,5)P2 or PtdIns(3,4,5)P3) 
bind to the basic region. This interaction is important for protein localization or 
activation of the ARP2/3 complex. N-WASP contains a CDC42/Rac-interactive binding 
(CRIB) region for CDC42 binding. WAVE2 binds to Rac through SRA1/PIR121 in the 
WAVE2 complex and through IRSp53 that binds to the proline-rich (Pro-rich) region of 
WAVE2. N-WASP, WAVE2 and other WASP and WAVE family proteins have a proline-rich 
region for binding to Src-homology-3 (SH3)-domain-containing proteins and profilin. 
The binding of SH3-domain-containing proteins to N-WASP or WAVE2 contributes to 
the optimization of ARP2/3 activation. The adaptor protein Nck also binds to NAP1. 
The C-terminal region is known as the verprolin-homology domain (V), the cofilin-
homology domain (C) and the acidic domain (A). Actin monomer (G-actin) binds to the 
V domain, whereas the ARP2/3 complex binds to the CA domain. The simultaneous 
binding of G-actin and the ARP2/3 complex to the VCA region contributes to the 
activation of ARP2/3-complex-mediated actin polymerization.
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Figure 2 | WASP and WAVE interactors. Proteins that interact with mammalian Wiskott–Aldrich syndrome protein 
(WASP), neural (N-)WASP and yeast Las17 (a), or mammalian WASP-family verprolin-homologous protein-1 (WAVE1), 
WAVE2 and WAVE3 (b), are shown by connecting lines according to their characteristics. Pink areas include proteins that 
form stable complexes with WASP family proteins and WASP-interacting protein (WIP) family proteins (a) or WAVE 
proteins, Abelson-interacting protein (ABI), NAP1, SRA1 (or the closely related PIR121) and HSPC300 (b). Blue areas 
include proteins that are involved in nucleation of actin polymerization. Beige areas include proteins that have Src-
homology-3 (SH3) domains for interactions. Dark green and light green areas include EFC- and BAR-domain-containing 
proteins, respectively. The yellow area includes proteins that interact with dynamin. The light pink circle indicates the 
protein that has a Rac-binding (RCB) domain (also known as a IRSp53-Mim-homology (IMD)). BAR, EFC and RCB/IMD 
domains have homology to each other and are a large protein family. Bold font indicates small GTPases. Proteins that are 
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protein; CR16, corticosteroid and regional expression-16; FBP, formin-binding protein; GRB2, growth-factor receptor-
bound protein-2; PI3K, phosphatidylinositol-3 kinase; PSTPIP, proline, serine, threonine phosphatase-interacting protein; 
PKA, protein kinase A; PtdIns, phosphatidylinositol; srGAP, slit-roboGAP; WICH, WIP- and CR16-homologous protein 
(also known as WIP-related (WIRE)) ; WRP, WAVE-associated RacGAP protein; Vrp1, verprolin-1.
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ABI (Abelson-interacting protein), NAP1 (also known 
as p125NAP1), SRA1 (or the closely related  PIR121; 
SRA1 is also known as CYFIP1) and HSPC300 (also 
known as BRICK). This pentameric heterocomplex 
is referred to as the WAVE complex98–101 (FIGS 1,2b). 

The WHD domains of all three WAVEs interact with the 
predicted coiled-coil region of ABI1/2 and HSPC300, 
which is a small peptide of approximately 75 amino 
acids100,103. ABI1 and ABI2 were originally identified as 
molecules that interact with the ABL tyrosine kinase, 
but ABI1/2 forms the 1:1 protein complex with each 
WAVE. ABI1/2 links NAP1 to WAVEs and NAP1 binds 
to SRA1/PIR121. SRA1/PIR121 and NAP1 are homo-
logues of Caenorhabditis elegans GEX-2 and GEX-3, 
respectively, which are involved in ventral enclosure 
(a process of dermal-cell migration during C. elegans 
development)104. The ARP2/3 complex is also required 
for ventral enclosure105. Importantly, NAP1 binds to 
Nck, and SRA1/PIR121 binds to activated Rac106,107. 
Therefore, Nck and Rac might regulate WAVE-mediated 
activation of the ARP2/3 complex through NAP1 and 
SRA1/PIR121.

Formation of the WAVE complex contributes to 
the localization and stability of the various WAVE pro-
teins103,108–110. For example, decreased expression of any 
protein of the complex results in both mislocalization 
of WAVE2 and decreased amounts of each protein in 
the WAVE2 complex108–110. However, the localizations 
of WAVE proteins are not determined only by the form-
ation of the complex. WAVE1, WAVE2 and WAVE3 are 
localized differently in growth cones111, and WAVE1 and 
WAVE2 localize differently in fibroblasts112,113.

The role of the WAVE complex in the activation of 
the ARP2/3 complex remains controversial. WAVE1 and 
HSPC300 can dissociate from the rest of the complex 
(which includes ABI, NAP1 and SRA1/PIR121) in the 
presence of Rac or Nck in vitro. The released WAVE1 
can activate ARP2/3 (REF. 98), whereas the rest of the 
complex, ABI, NAP1, and SRA1/PIR121, seems to trans-
inhibit the WAVE1 activity. However, a recent report 
indicated that the WAVE1 complex purified from brain 
can also activate ARP2/3 (REF. 114).

The WAVE2 complex was shown to be stable after 
incubation with active Rac or incubation with stimuli 
that induce Rac activation, and could be as active as a 
VCA-region fragment of WAVE2 (constitutively active 
fragment)99,101. It is still unclear whether WAVE2 activity 
is suppressed by the intramolecular interaction, as is the 
case for N-WASP. WAVE2 activity might be regulated 
by the control of its localization alone.

WAVE2 is crucial for lamellipodium formation
In lamellipodium or filopodium formation, actin poly
merization occurs towards the plasma membrane at 
the cell periphery (FIG. 4c). Studies of WAVE2-knockout 
fibroblasts showed that WAVE2 is essential for lamelli-
podium formation downstream of Rac112,115,116. However, 
the molecular link between Rac and WAVE2 was not 
clear until the discovery of the WAVE protein complex. 
One of the proteins in the WAVE complex, SRA1/
PIR121, binds to activated Rac107. In lamellipodia, actin 
filaments are branched at 70° (REF. 74), which is the angle 
at which the ARP2/3 complex and WAVE2 generate 
branched filaments in vitro19,20,81, indicating that the 
branched actin filaments in lamellipodia are the direct 
result of WAVE2 function.

Figure 3 | Phylogenetic analysis of WASP- and WAVE-binding proteins that have 
BAR, EFC or RCB/IMD domains. a | Phylogenetic analysis of BAR-, EFC - or Rac-
binding (RCB; also known as a IRSp53-Mim-homology (IMD))-domain-containing 
proteins that are reported to interact with Wiskott–Aldrich syndrome protein (WASP) 
and WASP-family verprolin-homologous protein (WAVE). The homologues in 
Saccharomyces cerevisiae (Sc), Schizosaccharomyces pombe (Sp), Dictyostelium 
discoideum (Dd), Caenorhabditis elegans (Ce), Drosophila melanogaster (Dm), and Homo 
sapiens (Hs) are shown. Proteins on blue, red or green lines are reported to bind to WASP 
or neural (N-)WASP, WAVE proteins, or both, respectively. b | The structures of BAR-
domain amphiphysin, BAR-domain endophilin and RCB/IMD-domain IRSp53 are shown 
(upper images show surface electrostatics and lower images show ribbon diagrams of 
secondary structure). The solid line in the BAR-domain structure indicates where the 
curved cell membrane is thought to interact with the BAR domain. The dashed line in 
the RCB/IMD structure indicates binding of the RCB/IMD domain to the membrane. 
c | Typical domain structure of a BAR-, EFC or RCB/IMD-domain-containing protein. 
The BAR, EFC or RCB/IMD domain is in the N-terminal, and the Src-homolgy-3 (SH3) 
domain is in the C-terminal of the protein.
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IRSp53 optimizes WAVE2 at the membrane. WAVE2 
has a specific linker molecule, IRSp53. IRSp53 was 
originally identified as an insulin-receptor substrate, 
but it was subsequently shown to bind to both Rac 
and WAVE2 (REFS 117,118). IRSp53 also binds to 
WAVE1 and WAVE3, but its affinities for WAVE1 and 
WAVE3 are much weaker than its affinity for WAVE2 
(REFS 102,118,119). WAVE2 and IRSp53 have also been 

shown to be involved in spine formation120. IRSp53 is 
colocalized with WAVE2 (REF. 121), but is not essential 
for the localization of WAVE2 at the leading edge of 
lamellipodia101. Furthermore, IRSp53 enhances the 
activity of the WAVE2 complex in the presence of Rac 
and PtdIns(3,4,5)P3 in vitro, indicating that IRSp53 
optimizes WAVE2 activity when Rac is active during 
lamellipodium formation101. Therefore, the WAVE2 
complex can bind to Rac through IRSp53 and through 
SRA1/PIR121 of the WAVE2 complex.

IRSp53 has a CDC42-binding site that does not over-
lap with its RCB/IMD domain, and CDC42-binding to 
IRSp53 decreases the affinity of IRSp53 for WAVE2 
(REFS 101,122). The RCB/IMD domain binds to activated 
Rac and actin filaments118,123, whereas the SH3 domain 
of IRSp53 binds transiently to the proline-rich region of 
WAVE2 (REF. 101).

The RCB/IMD domain contains α-helical bundles 
that are similar to the BAR domain62,124,125. Accordingly, 
the RCB/IMD domain of IRSp53 binds to the cell 
membrane101. The BAR domain has a gradually curved 
structure, and its concave surface is positively charged, 
which favours binding to the negatively charged cell 
membrane to induce tubulated membrane or to sense 
membrane curvature65 (FIG. 3). The surface of the RCB/
IMD domain is also positively charged. However, 
the RCB/IMD domain is straight, and the RCB/IMD 
domain deforms the membrane in a different direction 
to that induced by the BAR and EFC domains in a Rac-
dependent manner125 (FIG. 3). Membrane protrusions 
that seem to lack actin filaments have been observed in 
IRSp53-overexpressing cells121,125,126. Although it is pos-
sible that a trace amount of actin filaments is present, 
this observation strongly indicates that the protrusion 
is composed of membrane without actin filaments. 
Therefore, actin polymerization is probably not the 
driving force for the membrane protrusion. IRSp53 
might affect membrane organization independently of 
actin filaments. This possible actin-independent pro-
trusion by IRSp53 might function with actin-polymeri-
zation-dependent protrusion during lamellipodium or 
filopodium formations.

As discussed above, the direction of actin polymeri-
zation at the plasma membrane for endocytosis could 
be the same as the direction of actin polymerization for 
protrusions such as lamellipodia and filopodia (FIG. 4b,c). 
Curvature sensing by the RCB/IMD domain, the BAR 
domain and EFC domain might possibly determine 
whether the plasma membrane is put forward for pro-
trusion or invaginated and pinched off for endocytosis 
vesicles.

WAVE1 regulates dorsal ruffle formation
WAVE1 is not essential for protrusion of the leading edge 
of lamellipodia112,113, but it is involved in the formation of 
dorsal ruffles, circular assemblies of actin filaments 
formed upwardly in the dorsal surface of cells112. In 
WAVE1-knockout cells, extension of the leading edge 
occurs faster than in wild-type cells113; however, the 
leading edges in WAVE1-knockout cells are unstable 
and have shorter half-lives than those of wild-type cells. 

Figure 4 | Functional models of WASP and WAVE proteins in inward or outward 
deformation of the membrane. Wiskott–Aldrich syndrome protein (WASP) and WASP-
family verprolin-homologous protein (WAVE) proteins and the BAR, EFC or Rac-binding 
(RCB; also known as a IRSp53-Mim-homology (IMD))-domain-containing proteins 
function as functional units that organize the curvature of both the membrane and the 
cytoskeleton. In endocytosis, the direction of actin polymerization (that is, the direction 
of the barbed end) can be facing towards the endocytosis vesicles (a), or towards the 
plasma membrane (b). In both cases, the BAR- or EFC-domain-containing proteins recruit 
both neural (N-)WASP and dynamin to induce membrane fission. In model a, the 
elongating barbed end pushes the vesicles for vesicle movement, whereas in model b, 
the elongating pointed end pushes the vesicles or the elongating barbed end towards 
the plasma membrane and thereby generates force for vesicle fission. For outward 
protrusions, such as lamellipodia and filopodia, actin polymerization occurs outwardly: 
the barbed end faces towards the plasma membrane (c), and polymerization might 
possibly be initiated by the RCB/IMD-domain-containing proteins that can recruit 
WAVE, VASP and other proteins. If model b occurs, it is still unclear how endocytosis (b) 
and outward protrusion (c) are differentially regulated during actin polymerization. 
Membrane-binding domains such as BAR, EFC and RCB/IMD might sense the curvature 
of the membrane to determine the direction of reorganization of the actin cytoskeleton. 
Small GTPases and protein kinases regulate the activity of the WASP and WAVE family to 
induce actin polymerization through the ARP2/3 complex. Src-homology-3, SH3.
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Consistent with this finding, WAVE1 is localized slightly 
behind the leading edge112,113, and therefore, WAVE1 
might be important for the accumulation of actin fila-
ments behind the leading edge to increase the mechanical 
force necessary for protrusion.

Several proteins bind to WAVE1. WRP (WAVE-
associated RacGAP protein) binds to WAVE1 through its 
SH3 domain127 and has an EFC domain and a RacGAP 
domain56,63. WRP inactivates Rac and might recruit 
WAVE1 to the membrane. Therefore, WAVE1 and 
WRP might function cooperatively to stabilize the actin 
cytoskeleton and to complete lamellipodium formation. 
The RII subunit of cAMP-dependent kinase (PKA) and 
p47phox (NADPH-oxidase adapter) are also reported to 
bind specifically to WAVE1 (REFS 128,129), but the role of 
these molecules for WAVE1 function is not clear.

Phosphorylation of WAVE1. The activity of WAVE1 
in ARP2/3-complex activation is regulated by phos-
phorylation. Phosphorylation of WAVE1 suppresses 
ARP2/3-complex activation by WAVE1 without affect-
ing the stability of the WAVE1 complex114. WAVE2 is 
phosphorylated by mitogen-activated protein kinase 
(MAPK), but the significance of this phosphorylation 
remains to be determined130.

WASP and WAVE and cell-shape changes
Cell shape had long been thought to be determined 
by the cytoskeleton beneath the cellular membrane. 
However, this idea could be revised by the discovery 
of several membrane-deforming proteins that bind to 
WASP and WAVE proteins.

The proteins of the largest population among WASP- 
and WAVE-binding proteins consist of an N-terminal 
membrane-binding domain (BAR, EFC or RCB/IMD 
domain) and a C-terminal SH3 domain (FIGS 2,3). These 
N-terminal domains bind to the cell membrane and the 
SH3 domains bind to and activate WASP and WAVE 
proteins. The proteins containing a BAR- or an EFC-
domain are conserved from yeast to mammals (FIG. 3). 
WASP is found in yeast, but WAVE is not, and WAVE-
binding proteins, including IRSp53 and WRP, are present 
only in multicellular organisms (FIG. 3).

Conservation of WASP and WAVE proteins, as well 
as their binding proteins, indicates that SH3-medi-
ated interaction of BAR- or EFC-domain-containing 
proteins with the WASP–WIP complex is the original 
functional unit for changes in cell shapes. For Las17, 
the yeast WASP homologue, the binding of Las17 to 
Cdc42 has not been detected, but the binding of Las17 
to Vrp1, a yeast homologue of WIP, and the binding of 
Las17 to Rvs167, a BAR-domain-containing protein, and 
Bzz1, an EFC-domain-containing protein, is conserved 
during endocytosis12,66,72. The functions of WASP or 
WAVE downstream of small GTPases seem to be a later 
evolutionary development.

In single-cell organisms, changes of cell shape occur 
under limited conditions, such as endocytosis, exocyto-
sis and cytokinesis. WASP and EFC-domain-containing 
proteins probably have been developed for endocytosis 
or inward vesicle movement. BAR and the EFC domains 
bind to phosphatidylserine and PtdIns(4,5)P2 for sensing 
or for the deformation of the membrane, whereas SH3 
domains recruit WASP or N-WASP as well as dynamin, 
leading to the generation of endocytosis vesicles (FIG. 5).

On the other hand, drastic changes in the shapes of 
outward protrusions occur during cell movement or 
cell adhesions in multicellular organisms. Although the 
machinery for sensing or for generating membrane curv-
ature in outward protrusions is not well characterized, 
the machinery for endocytosis might have evolved to fill the 
cell’s need to form protrusive structures for cell movement 
and cell adhesions. The BAR-related RCB/IMD domain of 
IRSp53 is a strong candidate for membrane-deformation 
capability and for curvature-sensing capability for out-
ward protrusion125, if membrane-deformation and sensing 
occurs in protrusion.

The endocytosis machinery is known to require 
many membrane-binding proteins. These molecules 
include clathrin for coated-pit formation and dynamin 
for membrane fission. No such proteins have been 
identified for membrane protrusions (FIG. 5). If similar 
molecules, including WASPs, WAVEs and the proteins 
with BAR, EFC and RCB/IMD domains, are involved in 
both membrane protrusion and endocytosis, then the 
identification of membrane-binding proteins associated 
with cell protrusion will be a subject of future studies.

Figure 5 | Regulation of inward or outward protrusions of the cell membrane. 
Many processes are involved in endocytosis. Assembly of clathrin-coated pits followed 
by the binding of EFC- and BAR-domain-containing proteins to the membrane occurs in 
endocytosis. Then, actin polymerization is induced by the ARP2/3 complex and by neural 
Wiskott–Aldrich syndrome protein (N-WASP). Simultaneously, dynamin seems to cause 
fission of the invaginated membrane to make vesicles. In contrast to the invagination of 
the membrane for vesicular trafficking, outward protrusive structures involve fewer 
molecules that bind to the membrane. Novel molecules of membrane-binding capability 
might participate in the protrusion of the membrane if protrusions have evolved from the 
same processes, as did endocytosis and intracellular trafficking. 
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Conclusions
Molecules that regulate the actin cytoskeleton have 
been studied extensively in the past decade. The iden-
tification of the WASP and WAVE family proteins and 
of the ARP2/3 complex in the 1990s greatly enriched 
our understanding of how extracellular stimuli trig-
ger the rearrangement of the actin cytoskeleton. The 
exponential growth of actin filaments that are linked to 
each other by branching seems to generate the force for 
cell-shape alterations.

However, cell shape is determined by the shape of the 
cell membrane, because the most outer layer of the cell is 
the membrane. Discovery of the membrane-deforming 
capability of BAR-domain-related membrane-binding 
proteins that include BAR, EFC and RCB/IMD domains 
indicate another mechanism in the shape changes of cel-
lular membranes. BAR-domain-related proteins seem to 
couple to WASP and WAVE family proteins. The protein 
complexes of WASP and WAVE and BAR-domain-related 

proteins seem to synergistically regulate the cyto skeleton 
and membrane shape. Possible functional units of 
WASP and WAVE proteins and BAR-domain-related 
proteins are involved in both outward protrusion and 
inward vesicle trafficking. Therefore, these two types of 
cell-shape change might have an identical origin.

Currently, most BAR-domain-related proteins are 
involved in endocytosis and associate with WASP pro-
teins. Fewer molecules associate with WAVE proteins 
(FIGS 2,3 and Supplementary information S1 (table)). 
Therefore, it is unclear how WAVE proteins are pre-
dominantly adapted to protrusion formation rather than 
to endocytosis. The answer of how WASP and WAVE 
proteins function differently for various morpho logical 
changes of several cells has not yet been obtained. 
Furthermore, it is still unclear how each WAVE protein 
is regulated and functions differently. These ques-
tions remain to be solved to clarify the mechanisms of 
cell-shape and body formation.
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