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Introduction
The expression of several thousand genes can be studied
simultaneously by use of DNA microarrays. These
microarrays have been used in many specialties of
medicine. In oncology, their use can identify genes with
different expressions in tumours with different
outcomes.1–9 These gene-expression profiles or molecular
signatures are expected to assist in the selection of
optimum treatment strategies, by allowing therapy to be
adapted to the severity of the disease.10 Gene-expression
profiling is already being used in clinical trials to define
the population of patients with breast cancer who should
receive chemotherapy. Such trials are being launched in
Dutch academic centres and in the USA.11

A major challenge with DNA microarray technology is
analysis of the massive data output, which needs to
account for several sources of variability arising from the
biological samples, hybridisation protocols, scanning, and
image analysis.12 Diverse approaches are used to classify
patients on the basis of expression profiles: Fisher’s linear
discriminant analysis, nearest-centroid prediction rule,
and support vector machine, among others.12,13 To
estimate the accuracy of a classification method, the
standard strategy is via a training–validation approach, in
which a training set is used to identify the molecular
signature and a validation set is used to estimate the
proportion of misclassifications.

Leading scientific journals require investigators of
DNA microarray research to deposit their data in an
appropriate international database,14 following a set of

guidelines (Minimum Information About a Microarray
Experiment15). This approach offers an opportunity to
propose alternative analyses of these data. We have taken
advantage of this opportunity to analyse different datasets
from published studies of gene expression as a predictor
of cancer outcome. We aimed to assess the extent to
which the molecular signature depends on the
constitution of the training set, and to study the
distribution of misclassification rates across validation
sets, by applying a multiple random training-validation
strategy. We explored the relation between sample size
and misclassification rates by varying the sample size in
the training and validation sets.

Methods
Data sources
All microarray studies of cancer prognosis published
between January, 1995, and April, 2003, were reviewed
in 2003 by Ntzani and Ioannidis.1 From this review, we
selected studies on survival-related outcomes (disease-
free, event-free, or overall survival), which had
included at least 60 patients (table). These studies used
various classification methods: linear discriminant
analysis, support vector machines, and prediction rules
based on Cox’s regression models. The sample size
varied between 60 and 240 and the percentage of
events between 14% and 58%.

Data were publicly available for seven studies2–9

(webtable at http://image.thelancet.com/extras/04art
5032webtable.pdf). We defined a binary clinical
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Summary
Background General studies of microarray gene-expression profiling have been undertaken to predict cancer

outcome. Knowledge of this gene-expression profile or molecular signature should improve treatment of patients by

allowing treatment to be tailored to the severity of the disease. We reanalysed data from the seven largest published

studies that have attempted to predict prognosis of cancer patients on the basis of DNA microarray analysis.

Methods The standard strategy is to identify a molecular signature (ie, the subset of genes most differentially

expressed in patients with different outcomes) in a training set of patients and to estimate the proportion of

misclassifications with this signature on an independent validation set of patients. We expanded this strategy

(based on unique training and validation sets) by using multiple random sets, to study the stability of the

molecular signature and the proportion of misclassifications. 

Findings The list of genes identified as predictors of prognosis was highly unstable; molecular signatures strongly

depended on the selection of patients in the training sets. For all but one study, the proportion misclassified

decreased as the number of patients in the training set increased. Because of inadequate validation, our chosen

studies published overoptimistic results compared with those from our own analyses. Five of the seven studies

did not classify patients better than chance. 

Interpretation The prognostic value of published microarray results in cancer studies should be considered with

caution. We advocate the use of validation by repeated random sampling.
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outcome as described in the table. The binary endpoint
was the same as in the original papers in five
studies.3,4,7–9 For the other studies,2,5 we used the binary
status of patients being dead or alive at last follow-up,
instead of the time to events used by the study
investigators. For all studies, we merged the training
and validation sets to select training-validation sets
repeatedly and randomly.

Statistical analysis
First, we eliminated genes that showed little or no
variation across samples (table).12 For every study, we
divided the dataset (size N) using a resampling
approach into 500 training sets (size n) with
n/2 patients having each outcome, and 500 associated
validation sets (size N–n). Selection of training sets
including half the patients with and half without a
favourable outcome maximises the power of the
comparison between average gene expressions in the
two groups. We identified a molecular signature for
each training set and estimated the proportion of
misclassifications for each associated validation set.
We used different n values, from ten to a maximum
value, which was chosen so that the validation set had
at least one patient representing each outcome.

For a given training set, the molecular signature was
defined as the 50 genes for which expression was most
highly correlated with prognosis as shown by
Pearson’s correlation coefficient. We defined two
average profiles (favourable and unfavourable) as
vectors of the average expression values of these
50 signature genes in patients with favourable and
unfavourable prognoses. We classified each patient in
the corresponding validation set according to the
correlation between expression of his or her signature
genes and the two average profiles; the predicted
category was that with the highest correlation. This
simple method is commonly known as the nearest-
centroid prediction rule.13

Role of the funding source
The sponsor of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report. The corresponding author had

full access to all the data in the study and had final
responsibility for the decision to submit for
publication.

Results
We estimated thousands of signatures (500 for every
training-set size) for each of the seven microarray
studies and saw that the list of 50 genes that had the
highest correlations with outcome was very unstable.
For instance, with data from the study by van ’t Veer
and colleagues4 and a training set of the same size as in
the original publication (n=78), only 14 of 70 genes
from the published signature were included in more
than half of our 500 signatures (figure 1). Also, ten
genes not included in the published signature were
selected in more than 250 of our signatures.
Furthermore, 564 different genes of 4948 considered
by the researchers of the original publication were
included in at least one estimated signature. 

Similarly, when microarray data from Iizuka and
colleagues9 and a training set of 34 patients were
reanalysed, only four of 12 published signature genes
were seen in more than 250 of our signatures, whereas
nine not present in the published signature were also
selected in more than 250 estimated signatures
(figure 1). These results show how the molecular
signature strongly depends on the selection of patients
in the training set: we noted that every training set of
patients led to a different list of genes in the signature.

Figure 2 shows the proportion (and 95% CI) of
misclassifications as a function of the training-set size.
With the smallest training set (ten patients), the
proportion of misclassifications for the seven studies
varied between 40% and 50%. For all but one study, the
proportion of misclassifications decreased as the training-
set size increased. This finding suggests that the
proportion of misclassifications (and hence the predictive
ability of the molecular signature) could be improved with
large training-set sizes. The lowest proportion of
misclassifications (31%) was obtained in the study of
vant’t Veer and colleagues4 for a training set of 90 patients. 

An upper 95% confidence limit of less than 50% for
the misclassification rate suggests a significantly better
predictive ability of the molecular signature than

Study reference Cancer type Clinical endpoint Sample size Number of events (%) Number of channels (type) Number of genes after filtration*

2 Non-Hodgkin lymphoma Survival 240 138 (58%) 2 (Lymphochip) 6693
3 Acute lymphocytic leukaemia Relapse-free survival 233 32 (14%) 1 (Affymetrix) 12 236
4 Breast cancer 5-year metastasis-free survival 97 46 (47%) 2 (Agilent) 4948
5 Lung adenocarcinoma Survival 86 24 (28%) 1 (Affymetrix) 6532
6,7 Lung adenocarcinoma 4-year survival 62† 31 (50%) 1 (Affymetrix) 5403
8 Medulloblastoma Survival 60 21 (35%) 1 (Affymetrix) 6778
9 Hepatocellular carcinoma 1-year recurrence-free survival 60 20 (33%) 1 (Affymetrix) 4861

*For the data of vant’t Veer and colleagues,4 the same filter was used as in the original publication. For other studies, genes with little variation in expression were excluded. †Only patients with clinical follow-up of at least 4
years after surgical resection were analysed.7

Table: Description of eligible studies ordered by sample size
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expected by the play of chance. However, the 95% CI
for the proportion of misclassifications fell to below
50% for some training-set sizes in only two of the
studies3,4 (figure 2). The CIs for the proportion of
misclassifications were wide, emphasising the
instability of estimations based on a single validation
set; by definition, any individual estimate has a 95%
chance of being included in the 95% CI.

Some studies published misclassification rates that
were obtained by application of their classification rule
to an independent validation set. These rates were taken
from publications1 and are shown in figure 2. For the
studies by Rosenwald,2 vant’t Veer,4 and their
colleagues, published misclassification rates were below
the lower 95% confidence limit obtained by random
validation. A second validation study from the vant’t
Veer group reported a misclassification rate very similar

to our average estimate.16 The published
misclassification rate in Beer and co-workers’ study5

was also close to our average rate. Finally, in Iizuka and
colleagues’ study,9 two different classification methods
were tested: the estimate from the support vector
machine12,13 was very similar to the mean classification
rate obtained with our multiple random validation
strategy, whereas the more data-driven score system led
to an estimate below the lower 95% confidence limit.

We did a sensitivity study using other strategies to
identify signature genes: selection of the 20 or 100
most discriminating genes (instead of 50) or selection
of all genes with a significant correlation (p<0·01)
between expression and outcome. These three
strategies yielded curves that were very similar to those
in figure 2 (webfigure http://image.thelancet.com/
extras/04art5032webfigure.pdf).

Discussion
We noted unstable molecular signatures and
misclassification rates (with minimum rates between
31% and 49%). We used a basic algorithm to select
signature genes in the training sets and an easy-to-
comprehend method to classify patients in validation
sets. The signature was defined by the 50 genes that
were most highly correlated with the outcome in the
training set. The sensitivity analyses show that our
multiple random validation strategy led to results that
were insensitive to changes in the number of genes
selected. 

We classified each patient in the validation set to a
prognostic category according to the highest
correlation between the expression of his or her
signature genes and the favourable or unfavourable
profile (defined as the average expression of signature
genes in the corresponding category of the training
set). This algorithm was closely similar to the method
used by vant’t Veer and colleagues,4 but slightly less
arbitrary: we classified patients in the validation set by
the nearest-centroid prediction rule, whereas vant’t
Veer and co-workers classified them according to
whether the correlation with the unfavourable profile
was greater than 0·4. We chose a binary endpoint,
favourable versus unfavourable outcome, as used in
five of the studies; this endpoint ignored the timing of
events. Cox’s regression models could be used to take
time to events into account. 

In principle, there is no biological or mathematical
reason why one particular classification method should
be better than others for the prediction of the outcome
of cancer patients by use of microarray data. Different
algorithms used to classify tumours based on gene
expression have been compared by Dudoit and
colleagues.17 The study included well known
classification methods, such as nearest-neighbour
classifiers, linear discriminant analysis, and
classification trees, but also recent machine-learning
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Figure 1: Genes included in at least 250 of 500 molecular signatures for two of the studies
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techniques such as bagging and boosting (which are
supposed to improve classification by using perturbed
versions of the training set). 

The simplest of these methods, diagonal linear
discriminant analysis and nearest-neighbour
classification, predicted just as well as and even better
than the complicated ones. The prediction rule used in
our study, the nearest-centroid method, is very similar
to diagonal linear discriminant analysis; the only
difference is that our method assumes that all gene
expressions have the same variability.

In conclusion, the list of genes included in a
molecular signature (based on one training set and the
proportion of misclassifications seen in one validation
set) depends greatly on the selection of the patients in
training sets. Five of the seven largest published
studies addressing cancer prognosis did not classify
patients better than chance. This result suggests that
these publications were overoptimistic. We advocate
the use of validation by repeated random sampling.
Studies with larger sample sizes are needed before
gene expression profiling can be used in the clinic.
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Figure 2: Proportion of misclassifications in validation sets as a function of corresponding training-set sizes in the seven studies2–9

Green lines=mean proportion of misclassifications obtained from 500 random training-validation sets as a function of the training-set size. Pale red lines=95% CIs.
Dots=misclassification rates in original publications. Iizuka and colleagues9 published two misclassification rates by two different methods on the same validation set.
Diamond=second misclassification rate on a larger independent validation set16 from the vant’t Veer study.4
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