
of tri- and tetrapeptides (Table 1, entry 10).

When an excess of the oxidizing agent was

used with phenylalanine thiocarbamate 2, LC-

MS established that a 63% yield of dipeptide

was obtained in just 5 min, along with 13%

tripeptide, 3% tetrapeptide, and traces of

penta- and hexapeptide (Table 1, entry 11).

In experiments in which a mixture of L-

serine (Ser, 50 mM) and the phenylalanine

thiocarbamate 2 (25 mM) in CHES (400

mM, pH 9.0) were allowed to react, either in

the presence of CdCl
2

(25 mM) or

K
3
Fe(CN)

6
(25 mM), a mixture of peptides

was produced corresponding to Phe-Ser,

Phe-Phe, Phe-Phe-Ser, and Phe-Phe-Phe.

No homopolymers of serine were observed.

In another experiment, a mixture of L-serine

and L-phenylalanine was exposed to COS

(Table 2, entry 4). In contrast to the previous

reaction, Ser-Ser and Ser-Ser-Ser were pro-

duced, along with polymers of phenylalanine

and mixed peptides (Fig. 1B). These obser-

vations strongly suggest that the activated "-

aminoacyl compound derives from the thio-

carbamate structure and that, once activation

has occurred, peptide formation proceeds via

nucleophilic attack by a second "-amino acid

molecule on the in situ–formed NCA. The

generality of the COS-mediated "-amino

acid condensation reactions in the presence

of Pb2þ was established with reaction

mixtures containing equimolar mixtures of

L-phenylalanine and either L-tyrosine, L-

leucine, L-alanine, or L-serine (Table 2, fig.

S5). In all reactions, efficient production of

mixed dipeptides and tripeptides was observed.

Present-day levels of COS in volcanic

gases have been reported up to 0.09 mol %

(14). Because the gas hydrolyzes rapidly on

a geological time scale, it is unlikely to have

accumulated to a high concentration in the

atmosphere. Thus, if COS was important in

prebiotic chemistry, it is likely to have func-

tioned in localized regions close to its

volcanic sources. Although it may be un-

likely that a substantial proportion of any

amino acids present would have been con-

verted to thiocarbamates, this would have

been no obstacle to a Bpolymerization on the

rocks[ scenario (15, 16) in which peptides

long enough to be irreversibly adsorbed near

the source of the COS were subject to slow

chain elongation. The direct elongation of

peptide chains using COS as a condensing

agent and the condensations catalyzed by

Fe2þ or Pb2þ ions seem plausible as

prebiotic reactions (17). The very efficient

polymerizations brought about by oxidizing

agents are more problematic as prebiotic

reactions, but EFe(CN)
6
^3þ has been dis-

cussed as a potential prebiotic oxidizing

agent (13).

It remains to be determined whether COS

could have participated in prebiotic chemistry

in other ways—for example, as an interme-

diate in the reduction of CO
2

(18, 19) and as

a condensing agent in phosphate chemistry

(20, 21).
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Little is known of the fate of viruses involved in long-term obligatory
associations with eukaryotes. For example, many species of parasitoid wasps
have symbiotic viruses to manipulate host defenses and to allow develop-
ment of parasitoid larvae. The complete nucleotide sequence of the DNA
enclosed in the virus particles injected by a parasitoid wasp revealed a com-
plex organization, resembling a eukaryote genomic region more than a viral
genome. Although endocellular symbiont genomes have undergone a dra-
matic loss of genes, the evolution of symbiotic viruses appears to be
characterized by extensive duplication of virulence genes coding for truncated
versions of cellular proteins.

Once regarded as a rare biological event,

symbiosis is now known to be central to the

origin of eukaryotic cellular organelles. The

genomes of mitochondria and plastids are

known to be dramatically reduced compared

with those of their ancestors—free-living

bacteria (1). There are also examples of viral

symbionts, but almost nothing is known

about the genome rearrangements these have

undergone during their evolution.

Polydnaviruses (PDVs) are used by para-

sitoid wasps to facilitate development of their

progeny within the body of immunocompetent

insect hosts, which are typically lepidopteran

larvae (2). Viral particles are produced in the
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wasp ovaries and are injected via the wasp

ovipositor into the insect host along with the

parasitoid eggs (2). Viral gene products act by

manipulating host immune defenses and

development, thereby ensuring the emergence

of adult parasitoid wasps (3). Unlike most

viruses, polydnaviruses are not transmitted by

infection, because no virus replication occurs

in parasitized host tissues. They are exclu-

sively inherited as an endogenous Bprovirus[
integrated in the wasp genome (4–6).

The Polydnaviridae are a unique insect

virus family on the basis of the molecular

features of their genome and of their obligate

association with endoparasitoid wasps (7, 8).

They are composed of two genera, braco-

viruses and ichnoviruses, associated with

braconid and ichneumonid wasps, respec-

tively, with distinct evolutionary origins (2).

Bracovirus-bearing species have a common

ancestor (9). The classical hypothesis is that

bracoviruses originate from an Bancestor

virus[ initially integrated into the genome

of the ancestor wasp species that lived 73.7 T
10 million years ago (10).

Several PDV genes expressed in parasitized

host tissues have been isolated from various

wasp species but the organization and content

of PDV genomes are largely unknown (11).

Here, we present the complete nucleotide

sequence of the bracovirus (CcBV) injected

by the wasp Cotesia congregata into its

lepidopteran host Manduca sexta.

With a full length of 567,670 base pairs

(bp), the CcBV genome (Table 1) is one of

the largest viral genomes sequenced so far

(11). The segmented genome is composed of

30 DNA circles ranging from 5 to 40 kb and

contains 156 coding DNA sequences (CDSs)

(Fig. 1). The overall sequence displays a

strong bias toward A-T content (66%), and

more than 70% of the sequence corresponds

to noncoding DNA. The circles encode at

least one gene (with the exception of a single

noncoding circle), and the percentage of

potential coding sequences varies from 7.4

to 53.9% depending on the circle, a gene

density that is markedly different from the

highly compact structure of a Bclassical[
virus genome. Unlike most viral genes, many

CcBV genes contain introns (69%), and

42.3% of putative CDSs have no similarity

to previously described genes (Fig. 2).

Another unique feature of the CcBV ge-

nome, compared with classical viruses, is the

abundance of gene families: 66 genes

(42.5%) are organized in nine families

(Table 2). It is noteworthy that the proteins

encoded by four of these gene families

contain highly conserved domains previously

described in virulence factors used by

bacterial pathogens or parasitic nematodes.

The largest CcBV gene family comprises

27 genes encoding protein tyrosine phospha-

tases (CcBV PTP). PTPs are known to play a

key role in the control of signal transduction

pathways by dephosphorylating tyrosine

residues on regulatory proteins (12). We

recently identified PTPs in bracoviruses of

two distantly related braconid subfamilies

(13) (Table 2), which suggests that they

constitute a common component of braco-

virus genomes. Bracovirus PTPs share sig-

nificant similarity with cellular PTPs, but

they are not homologous to baculovirus or

poxviruses PTPs, which counters the hypoth-

esis that bracoviruses originated from baculo-

viruses as initially suspected (14). Note hat

some bacterial pathogens, such as Yersinia

pestis, inhibit host macrophage phagocytosis

by injecting PTPs that interfere with the

signal transduction pathways controlling

actin cytoskeleton dynamics (15). In re-

sponse to the injection of a foreign body,

insect hosts enclose it in a cellular sheath of

hemocytes in an encapsulation process that

requires adherence, spreading, and attach-

ment of immune cells. Like pathogenic

bacteria, parasitoid wasps may inhibit the

cytoskeleton dynamics of immune cells

using viral PTPs and thus may prevent

encapsulation of parasitoid eggs.

The second largest CcBV gene family

(CcBV ank) comprises six genes encoding

proteins with ankyrin repeat motifs. These

proteins belong to the I0B family (16),

whose members are inhibitors of nuclear

factor 0B (NF-0B)/Rel transcriptional fac-

tors, implicated in vertebrate and Drosophila

immune responses (17). As reported recently

for other PDVs, CcBV Ank proteins lack the

regulatory elements associated with the basal

degradation of I0B proteins. Normally, prote-

olysis of the inhibitor of nuclear factor 0B

(I0B) releases NF-0B/Rel, sequestered in the

cytoplasm by I0B, to translocate to the

nucleus and to initiate transcription of im-

mune response genes (17). A similarly trun-

cated I0B-like protein is used by a poxvirus

(the African swine fever virus) to inhibit the

vertebrate immune response (18). The trun-

cated forms of the six CcBV Ank proteins

may play the same role in lepidopteran hosts.

The third gene family encodes for four

predicted cysteine-rich proteins (CcBV crp)

containing a particular cysteine knot motif

(19). A similar protein—teratocyte secreted

protein 14 (TSP 14)—is encoded by a

cellular gene of a braconid wasp species

(20). The TSP14 protein is secreted by

teratocytes (i.e., wasp cells circulating within

the host_s hemolymph) and, notably, inhibits

storage protein synthesis. CcBV Crp proteins

may also inhibit translation of storage

proteins, such as arylphorin, the level of

Table 1. Genomic features of CcBV (Cotesia
congregata bracovirus).

Genomic features Complete genome

Length (bp) 567670
AþT ratio (%) 66.05
Percent coding sequence 26.9
tRNA coding genes 7
Predicted genes encoding

proteins
156

Genes with functional
assignments

42

LTR and transposons 10

Fig. 1. Graphical rep-
resentation of the
gene distribution for
each CcBV circle. Each
circle is represented by
a bar. Areas in white
represent the length of
the coding sequence,
with the number of
coding sequences indi-
cated in black. Areas in
gray represent non-
coding sequences. The
total length of each
circle (bp) is indicated
in black.
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which is dramatically decreased in the

hemolymph of parasitized Manduca sexta

(21). Selective disruption of host protein

translation is thought to redirect host metab-

olism to support endoparasite growth and

development.

The fourth gene family encodes three

cysteine protease inhibitors (CcBV cyst) of

the cystatin superfamily. Cystatins have been

described in a variety of organisms (22) but

have apparently not previously been found in

viruses (23). Interestingly, cystatins are also

secreted by parasitic filarial nematodes and

account for a major part of their immuno-

suppressive activity (24).

The products of the five other gene

families do not contain any conserved

domains that would allow prediction of their

function (Fig. 2). Two genes are only known

from Cotesia congregata bracovirus (CcBV

hypothetical1 and CcBV hypothetical2 fam-

ilies), and the other three families contain

genes described in viruses associated with

other Cotesia species (25) (CcBV EP1-like,

CcBV family1, CcBV family2). Most of these

genes are expressed in the host tissues—the

EP1 protein, for example, can account for

10% of the hemolymph protein content in

parasitized hosts (26)—and presumably are

required for successful parasitism.

The complex genome of CcBV devotes at

least 26% of its CDS to potential virulence

factors. Several genes probably originate from

duplication events, resulting in multiple mul-

tigenic families consisting of up to 27 genes

and constituting almost half the CDS. Such

gene diversification may have facilitated the

radiation of the bracovirus-bearing wasp

complex, which now consists of 17,500

species (9). Strikingly, CcBV ank and CcBV

PTP resemble truncated versions of cellular

genes. Cysteine-knot motif genes have not

only been described in PDV genomes, but

also in the genome of a braconid wasp

(Microplitis croceipes) (20). Finally, some of

the CcBV genes, such as cystatin and histone

H4 genes, have apparently not yet been

described previously in viral genomes, which

suggests that some of the PDV genes have

been acquired from the cellular genome. Gene

transfer may have occurred into the chromo-

somally integrated form of the virus, after

recombination or transposition events.

Apart from the abundance of virulence

factors, the CcBV genome lacks CDS with

significant similarity to other virus genes.

There are remnants of genes from retrovirus-

like elements, but only three genes share

significant similarities with sequences from

free replicating viruses. Two putative pro-

teins have a significant similarity with a

baculovirus protein (48% similarity with

Autographa californica M nuclear poly-

hedrosis virus gp94) nonessential for infec-

tivity (27). A third protein shows significant

similarity(39.9%)toahypotheticalproteinfrom

Spodoptera frugiperda ascovirus 1 (SfAV1), a

member of a family of lepidopteran-infecting

viruses (28).

Unexpectedly, the bracovirus genome

does not contain any set of genes that offers

a hallmark for a known virus family. The

paucity of Bvirus-like[ genes may be partly

explained by the selection pressures acting on

PDVs. The genes involved in the production

of virus particles do not have to be present on

the DNA injected into insect hosts, because

virus particles_ replication is restricted to

wasp ovaries. The demonstration that the

p44 gene encoding a structural protein of the

Campoletis sonorensis ichnovirus is ampli-

fied in female wasps undergoing virus

Table 2. Features of the CcBV gene families. The features of each gene family
are detailed with the circle (C) localization of each gene and the number of
related genes on each circle. The average % of similarity of the related
proteins are indicated for each gene family. Other PDVs containing such

families are indicated. GiBV, Glyptapanteles indiensis bracovirus; CsIV,
Campoletis sonorensis ichnovirus; MdBV, Microplitis demolitor bracovirus;
HfIV, Hyposoter fugitidus ichnovirus; TnBV, Toxoneuron nigriceps bracovirus;
CkBV, Cotesia kariyai bracovirus; CgBV, Cotesia glomerata bracovirus.

Parameter
CcBV families

PTP ank crp cyst EP1-like hp1 hp2 f1 f2

Number of related genes 27 6 4 3 6 2 7 6 5
Circle no.: no. of related genes C1:8 C11:1 C18:2 C19:3 C1:3 C30:1 C3:1 C9:2 C19:3

C4:2 C14:2 C32:1 C5:1 C18:1 C6:1 C23:1 C25:1
C7:1 C15:1 C35:1 C7:1 C9:1 C25:1 C30:1

C10:5 C26:2 C8:1 C20:1 C33:2
C14:3 C23:1
C17:5 C25:1
C26:3 C33:1

Percent similarity G5 19.49 13.79 75 16.34 63.28 33 41.48 75.14
PDVs in which similar gene families are found GiBV CsIV CsIV None CkBV None None CkBV CkBV

TnBV HfIV CgBV GiBV
TnBV MdBV
MdBV

Fig. 2. Classification of the
156 genes identified in the
CcBV genome: 42.3% of the
genes encode proteins show-
ing no similarity to proteins
in databanks (in white);
42.5% of the genes are orga-
nized in nine multigenic fam-
ilies (indicated with different
colors). In blue are shown
genes encoding proteins with
w e l l - k n o w n c o n s e r v e d
domains (PTPs, protein tyro-
sine phosphatases; ank,
ankyrin; crp, cysteine-rich
proteins; cyst, cystatins). In
orange are shown gene fam-
ilies specific of CcBV (hp1 and
hp2: hypothetical 1 and 2). In
green are shown gene fami-
lies common to other species
of the Cotesia genus. Of the
genes, 3.2% are single genes encoding proteins that are homologous to ‘‘bracovirus proteins’’
(hatched green); 1.9% (hatched gray) correspond to the three genes encoding proteins with viral
structural domains and 3.8% to the genes that resemble retrovirus-like elements (hatched pink).
In dotted-line gray are shown 6.4% of the genes encoding proteins that have similarity with
proteins in hypothetical databanks.
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replication, but is not encapsidated, lends

support to this hypothesis (29).

The idea that all the genes involved in

viral DNA replication and virion production

have been transferred to the wasp genome is

nevertheless difficult to sustain. A more

parsimonious hypothesis would be that

bracoviruses do not originate from any of

the large genome viruses characterized to

date (30). They may have been built up from

a simple system producing circular DNA

intermediates, such as mobile elements,

within the wasp genome. The acquisition of

a capsid protein, possibly of viral origin,

around the circular DNA intermediates would

have allowed infection of lepidopteran cells.

Finally, virulence genes could have been

acquired from the wasp genome at different

times during evolution of bracovirus-bearing

wasp lineages, thus explaining why CcBV

genes encoding proteins with a predicted

function resemble cellular genes.

From their genome content, bracoviruses

can be discerned as biological weapons

directed by the wasps against their hosts.

The wasp strategy for delivery of bracovirus

genes could inspire medical applications for

gene therapy, whereas PDV virulence factors

are of interest in agriculture. Currently, a

parasitoid gene is already in use in pest-

control studies: TSP 14–producing transgen-

ic plants significantly reduce Manduca sexta

larvae growth and development (31). Cys-

tatins also have pesticide activity, because

when expressed in transgenic plants, they

can reduce the growth of nematodes (32).

Other potential virulence factors encoded by

PDV genomes may also serve as a source of

natural molecules with insecticide activity of

high specificity (33).
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